首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3373篇
  免费   635篇
  国内免费   405篇
化学   2572篇
晶体学   37篇
力学   388篇
综合类   40篇
数学   475篇
物理学   901篇
  2024年   3篇
  2023年   56篇
  2022年   108篇
  2021年   143篇
  2020年   193篇
  2019年   172篇
  2018年   137篇
  2017年   159篇
  2016年   207篇
  2015年   162篇
  2014年   210篇
  2013年   301篇
  2012年   251篇
  2011年   253篇
  2010年   211篇
  2009年   205篇
  2008年   196篇
  2007年   198篇
  2006年   179篇
  2005年   165篇
  2004年   154篇
  2003年   177篇
  2002年   114篇
  2001年   77篇
  2000年   53篇
  1999年   46篇
  1998年   40篇
  1997年   40篇
  1996年   23篇
  1995年   37篇
  1994年   29篇
  1993年   14篇
  1992年   13篇
  1991年   16篇
  1990年   14篇
  1989年   9篇
  1988年   11篇
  1987年   6篇
  1986年   6篇
  1985年   4篇
  1984年   4篇
  1983年   5篇
  1982年   2篇
  1981年   2篇
  1979年   2篇
  1978年   1篇
  1977年   1篇
  1963年   1篇
  1959年   1篇
  1936年   1篇
排序方式: 共有4413条查询结果,搜索用时 428 毫秒
31.
In this work, a new nanocatalyst, Fe2W18Fe4@NiO@CTS, was synthesized by the reaction of sandwich‐type polyoxometalate (Fe2W18Fe4), nickel oxide (NiO), and chitosan (CTS) via sol–gel method. The assembled nanocatalyst was systematically characterized by FT‐IR, UV–vis, XRD, SEM, and EDX analysis. The catalytic activity of Fe2W18Fe4@NiO@CTS was tested on oxidative desulfurization (ODS) of real gasoline and model fuels. The experimental results revealed that the levels of sulfur content and mercaptan compounds of gasoline were lowered with 97% efficiency. Also, the Fe2W18Fe4@NiO@CTS nanocatalyst demonstrated an outstanding catalytic performance for the oxidation of dibenzothiophene (DBT) in the model fuel. The major factors that influence the desulfurization efficiency and the kinetic study of the ODS reactions were fully detailed and discussed. The probable ODS pathway was proposed via the electrophilic mechanism on the basis of the electrophilic characteristic of the metal‐oxo‐peroxo intermediates. The prepared nanocatalyst could be reused for 5 successive runs without any appreciable loss in its catalytic activity. As a result, the current study suggested the potential application of the Fe2W18Fe4@NiO@CTS hybrid nanocatalyst as an ideal candidate for removal of sulfur compounds from fuel.  相似文献   
32.
33.
陈华俊  朱鹏杰  陈咏雷  侯宝成 《中国物理 B》2022,31(2):27802-027802
We investigate theoretically Rabi-like splitting and Fano resonance in absorption spectra of quantum dots(QDs)based on a hybrid QD-semiconducting nanowire/superconductor(SNW/SC)device mediated by Majorana fermions(MFs).Under the condition of pump on-resonance and off-resonance,the absorption spectrum experiences the conversion from Fano resonance to Rabi-like splitting in different parametric regimes.In addition,the Fano resonances are accompanied by the rapid normal phase dispersion,which will indicate the coherent optical propagation.The results indicate that the group velocity index is tunable with controlling the interaction between the QD and MFs,which can reach the conversion between the fast-and slow-light.Fano resonance will be another method to detect MFs and our research may indicate prospective applications in quantum information processing based on the hybrid QD-SNW/SC devices.  相似文献   
34.
Considering the effect of stochasticity including white noise and colored noise, this paper aims to study a hybrid stochastic cholera epidemic model with waning vaccine-induced immunity and nonlinear telegraph perturbations. First, we derive a critical value ? 0 C related to the basic reproduction number ? 0 of the deterministic model. The key aim of this paper is to generalize the θ-stochastic criterion method proposed by the recent work (Han et al. in Chaos Solit Fract 140:110238, 2020) to eliminate nonlinear telegraph perturbations. Next, via constructing several θ-stochastic Lyapunov functions and using the generalized method, we further prove that the stochastic model have a unique ergodic stationary distribution under ? 0 C > 1. Results show that the prevention and control of cholera epidemic depend on low transmission rate and small telegraph perturbations. Finally, the corresponding numerical simulations are performed to illustrate our analytical results and a practical application on the Somalia cholera outbreak is shown at the end of this paper.  相似文献   
35.
36.
Reactions of R1SnCl3 (R1=CMe2CH2C(O)Me) with (SiMe3)2Se yield a series of organo‐functionalized tin selenide clusters, [(SnR1)2SeCl4] ( 1 ), [(SnR1)2Se2Cl2] ( 2 ), [(SnR1)3Se4Cl] ( 3 ), and [(SnR1)4Se6] ( 4 ), depending on the solvent and ratio of the reactants used. NMR experiments clearly suggest a stepwise formation of 1 through 4 by subsequent condensation steps with the concomitant release of Me3SiCl. Furthermore, addition of hydrazines to the keto‐functionalized clusters leads to the formation of hydrazone derivatives, [(Sn2(μ‐R3)(μ‐Se)Cl4] ( 5 , R3=[CMe2CH2CMe(NH)]2), [(SnR2)3Se4Cl] ( 6 , R2=CMe2CH2C(NNH2)Me), [(SnR4)3Se4][SnCl3] ( 7 , R4=CMe2CH2C(NNHPh)Me), [(SnR2)4Se6] ( 8 ), and [(SnR4)4Se6] ( 9 ). Upon treatment of 4 with [Cu(PPh3)3Cl] and excess (SiMe3)2Se, the cluster fragments to form [(R1Sn)2Se2(CuPPh3)2Se2] ( 10 ), the first discrete Sn/Se/Cu cluster compound reported in the literature. The derivatization reactions indicate fundamental differences between organotin sulfide and organotin selenide chemistry.  相似文献   
37.
Temperature-sensitive hybrid films were synthesized with a concentration gradient by casting and UV curing of N-isopropylacrylamide (NIPAAm) monomers (0%–70%) on the free surface of waterborne polyurethane (WPU) films on a Teflon substrate. The surface hardness and contact angle of the free surface with a water drop increased asymptotically with the addition of NIPAAm, whereas those on the substrate side were virtually unchanged. The diffusion coefficient (D), rates of swelling at 20°C (below the lower critical solution temperature (LCST) of poly(N-isopropylacrylamide) (PNIPAM)) and deswelling at 50°C (above the LCST) increased with increasing NIPAM content, showing favorable thermosensitivity. In addition, the glassy state modulus and glass transition temperature (Tg) of the film increased with increasing NIPAM content, whereas the rubbery modulus decreased due to the increased molecular weight between the crosslinks. In addition, as the NIPAM content increased, the film showed a positive yield with an increased yield and fracture stress and decreased ductility. Above 50% NIPAM, the film became brittle, showing a linear stress–strain relationship.  相似文献   
38.
Silica aerogels are excellent thermal insulators, but their brittle nature has prevented widespread application. To overcome these mechanical limitations, silica–biopolymer hybrids are a promising alternative. A one‐pot process to monolithic, superinsulating pectin–silica hybrid aerogels is presented. Their structural and physical properties can be tuned by adjusting the gelation pH and pectin concentration. Hybrid aerogels made at pH 1.5 exhibit minimal dust release and vastly improved mechanical properties while remaining excellent thermal insulators. The change in the mechanical properties is directly linked to the observed “neck‐free” nanoscale network structure with thicker struts. Such a design is superior to “neck‐limited”, classical inorganic aerogels. This new class of materials opens up new perspectives for novel silica–biopolymer nanocomposite aerogels.  相似文献   
39.
A novel organic‐silica hybrid monolith was prepared through the binding of histidine onto the surface of monolithic matrix for mixed‐mode per aqueous and ion‐exchange capillary electrochromatography. The imidazolium and amino groups on the surface of the monolithic stationary phase were used to generate an anodic electro‐osmotic flow as well as to provide electrostatic interaction sites for the charged compounds at low pH. Typical per aqueous chromatographic behavior was observed in water‐rich mobile phases. Various polar and hydrophilic analytes were selected to evaluate the characteristics and chromatographic performance of the obtained monolith. Under per aqueous conditions, the mixed‐mode mechanism of hydrophobic and ion‐exchange interactions was observed and the resultant monolithic column proved to be very versatile for the efficient separations of these polar and hydrophilic compounds (including amides, nucleosides and nucleotide bases, benzoic acid derivatives, and amino acids) in highly aqueous mobile phases. The successful applications suggested that the histidine‐modified organic‐silica hybrid monolithic column could offer a wide range of retention behaviors and flexible selectivities toward polar and hydrophilic compounds.  相似文献   
40.
The combination of N‐heterocyclic and multicarboxylate ligands is a good choice for the construction of metal–organic frameworks. In the title coordination polymer, poly[bis{μ2‐1‐[(1H‐benzimidazol‐2‐yl)methyl]‐1H‐tetrazole‐κ2N3:N4}(μ4‐butanedioato‐κ4O1:O1′:O4:O4′)(μ2‐butanedioato‐κ2O1:O4)dicadmium], [Cd(C4H4O4)(C9H8N6)]n, each CdII ion exhibits an irregular octahedral CdO4N2 coordination geometry and is coordinated by four O atoms from three carboxylate groups of three succinate (butanedioate) ligands and two N atoms from two 1‐[(1H‐benzimidazol‐2‐yl)methyl]‐1H‐tetrazole (bimt) ligands. CdII ions are connected by two kinds of crystallographically independent succinate ligands to generate a two‐dimensional layered structure with bimt ligands located on each side of the layer. Adjacent layers are further connected by hydrogen bonding, leading to a three‐dimensional supramolecular architecture in the solid state. Thermogravimetric analysis of the title polymer shows that it is stable up to 529 K and then loses weight from 529 to 918 K, corresponding to the decomposition of the bimt ligands and succinate groups. The polymer exhibits a strong fluorescence emission in the solid state at room temperature.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号